
Classification Report 
Our study is based on a dataset originating from a Portuguese bank, spanning from 2008 to 

2013, containing a random sample of 4100 observations, including an output target, indicating if a 
customer has bought a long-term deposit account, and 19 input features, containing several indicators, 
from telemarketing specific and product details to client demographics and socio-economic indicators, 
providing a comprehensive set of variables for our analysis. We aim to enhance telemarketing efforts by 
integrating machine learning models into the decision-making process and accurately predicting a phone 
call's outcome, therefore enabling a more targeted customer selection and prioritisation during 
campaigns (Essex, 2022). The ultimate goal is to increase the effectiveness of these campaigns while 
reducing associated costs and time. In order to achieve our goal, our project contains two closely 
interlinked parts, one of Exploratory Data Analysis (EDA) and one of statistical modelling. 

EDA can be characterised as a well-established "statistical tradition" inherited by the machine 
learning and data science disciplines during the 4th industrial revolution (Behrens, 1997). EDA primarily 
aims to discover underlying patterns, outliers, correlations and trends. It assists in forming hypotheses 
by also utilising data visualisation tools for better comprehension of the outputs. Several steps are part 
of the EDA, such as data cleaning (handling missing data, removing outliers, etc.), data visualisation (box 
plots, histograms, scatter plots, etc.), and statistical measures (mean, median, mode, standard 
deviation, etc.) (Chatfield, 1985). The model-developing component of machine learning follows the 
completion of the EDA. In our project, we had to utilise Machine Learning Classification, a type of 
Supervised Learning that categorises data into classes (Alpaydin, 2010), to project the outcome variable 
into yes/no categories by first training the model and then predicting the outcomes. The main 
techniques that we used were Logistic Regression, Linear Support Vector Classification, K-Nearest 
Neighbors (KNN), Decision Trees, and Random Forest (Kotsiantis et al., 2007; Ortner, 2020). 

Our EDA process started by investigating high-level metrics of our dataset, such as columns, 
data types, and null values, and looking at the dataset's top five and bottom five rows. The dataset was 
mainly clean without any null values. We had to rename some column names for ease of use. We also 
created a summary of basic metrics (such as minimum, maximum, mean and median) of numeric 
columns and ensured that our dataset had no duplicate tuples (rows). Moreover, we produce the 5-
figure summary and the box plots of numeric columns. The "duration" column was highly fluctuating, 
with significant outliers being present (Figures 1 and 2). The rest of the columns presented no significant 
findings at this stage. 



 
Figure 1: "Duration" column boxplot 

 
Figure 2: "Duration" column summary of metrics 

 

Additionally, we visualised the column distributions finding significant asymmetry and kurtosis 
metrics in the "duration",  "campaign", "pdays", and "previous" columns (Figures 3 , 4, 5 and 6). Other 
metrics, such as "age" and "consumer_price_index", appeared to be normally distributed, which is 
expected due to their nature (Figures 7 and 8). 

 

 
Figure 3: Skew (asymmetry) metrics 

 
Figure 4: Kurtosis metrics 

 



 
Figure 5: "Duration" distribution 

 
Figure 6: "Campaign" distribution 

 

 
Figure 7: "Age" distribution 

 
Figure 8: "Consumer_price_index" distribution 

We also visualised the pair plots (based on the target column) and correlation metrics (by 
creating a corresponding heat map to visualise outcomes better), finding significant correlations only 
between metrics of similar nature, such as "employees" and "employment_rate" (Figures 9, 10 and 11). 



 
Figure 9: Pairplot based on the target variable 

 

 

 
Figure 10: Correlation metrics  

Figure 11: Heat map 

 
Moreover, we looked through the different categories based on the target variable, finding that 

the better-educated population opted for the program. Most opt-ins were in the middle of the year. The 
findings regarding opt-ins were similar for people that opted out of the program (Figures 12, 13, 14 and 
15). 



 
Figure 12: Opt-ins based on “education” 

 
Figure 13: Opt-ins based on the “month” 

 
Figure 14: Opt in/out based on “education” 

 
Figure 15: Opt in/out based on the “month” 

Regarding numerical values, people of 25-55 age opted-in for the program, being between 93 to 
94 in the "consumer_price_index" variable, though following the same norm as the categorical 
variables, the same categories opted out from the programme. These were also the most significant 
findings of the EDA (Figures 16, 17, 18 and 19). 

 



 
Figure 16: Opt-ins based on “age” 

 
Figure 17: Opt-ins based on “consumer_price_index” 

 
Figure 18: Opt in/out based on "age" 

 
Figure 19: Opt in/out based on "consumer_price_index" 

Continuing with our model selection, we started by copying the dataset to a new dataset and 
changing the categorical target variable to 0 and 1 values (for no and yes, respectively). We also change 
the columns "loan", "housing", and "default" for yes, no and unknown values to 0 and 1. Moreover, we 
assigned numerical values to days and months and performed one-hot-encoding to categorical variables 
with more than two categories. Finally, we split the dataset into two, one having the dataset without the 
target variable (X) and one having only the target variable (y). All features were selected as we noticed 
that the models performed better despite some having high asymmetry, as discussed in previous 
paragraphs. 

Regarding our models, we performed investigatory loops for all used models. For some of them, 
we noticed high inconsistencies between outputs, indicating that the models were overfitting, and thus 
we used the base variables. More specifically, we have used LogisticRegression, LinearSVC, KNeighbors, 
DecisionTree, Bagging, AdaBoost and RandomForest classifiers (Ortner, 2020). 

Logistic regression (LR) is one of the most common methods used in machine learning in 
problems where we need to predict categorical or binary variables. The advantage of linear regression is 
that it applies a sigmoid function fitted for the given features (Swaminathan, 2018), thus performing 
better in yes/no problems as opposed to using a linear function used for continuous value prediction 



(IBM, N.D.). In our specific example, LR was unstable after multiple runs of a fine-tuned model, possibly 
signifying overfitting. Considering this and the limited data, we proceeded with the base LR model, 
getting an average precision of 0.62 (62%) by comparing 1000 runs (Figure 20). 

 
Figure 20: Comparison of actual vs predicted values for Logistic Regression 

Linear Support Vector Machine (Linear SVC) was the second model we attempted to fine-tune. 
Linear SVC is regularly used in problems with high dimensionality. It defines a decision space, finds the 
closest vectors (data points) and calculates the decision lines to decide on the yes/no output 
(tutorialspoint, N.D.). In our specific example, Linear SVC was unstable after multiple runs of a fine-
tuned model, possibly signifying overfitting. Considering this and the limited data, we proceeded with 
the base Linear SVC model, getting an average precision of 0.59 (59%) by comparing 1000 runs (Figure 
21). 



 
Figure 21: Comparison of actual vs predicted values for Linear Support Vector Machine 

N-Nearest Neighbours (KNN) was the third model that we explored. KNN is a proximity-based 
majority-voting system, grouping points that have close proximity to each other, thus assuming that 
"similar points can be found near one another" (IBM, N.D.). In this classifier, no over-fitting was 
observed while exploring parameter assignment, therefore, a more complicated model was used, with 
eight nearest neighbours and uniform weighting being some of the parameters we used. The KNN model 
achieved an average precision of 0.63 (63%) by comparing 1000 runs (Figure 22). 

 
Figure 22: Comparison of actual vs predicted values for N-Nearest Neighbours 

Another model we used was the Decision Tree algorithm, which uses a classic tree structure 
(root, branches, leaves) and utilises a greedy search algorithm to find the tree's split points per the given 
features (IBM, N.D.). Similarly to the KNN algorithm, no overfitting was observed; therefore, we could 
specify the maximum nodes and the search depth, as well as our splitting method. The model achieved 



an average precision of 0.61 (61%) by comparing 1000 runs (Figure 23). Along with the Decision Tree 
algorithm, we also investigated the use of a Bagging Classifier (which is considered the Decision Tree's 
extension) to reduce variance, mainly due to the high variance of categories as explained in the EDA part 
(outliers, high standard deviation and significant difference between minimum and maximum values), 
and re-train the same model in many different samples. The results of the algorithm (by using the same 
Desicition Tree parameters) were marginally better than the plain Decision Tree classifier, performing 
with an average of 0.67 (67%) by comparing 1000 runs (Figure 24). 

 
Figure 23: Comparison of actual vs predicted values for 

Decision Trees 

 
Figure 24: Comparison of actual vs predicted values for 

Bagging Classifier 

 
The AdaBoost (Adaptive Boosting) classifier works similarly to the Bagging Classifier, meaning a 

classifier using another base classifier (weak learner), but is sensitive to outliers, which are present in 
some instances of our dataset, as we showed during the EDA part. Despite its disadvantage can be 
proven a better-performing classifier in specific problems (De, 2020), and, in our case, the model 
achieved an average precision of 0.8 (80%) by comparing 1000 runs (Figure 25). 

 



 
Figure 25: Comparison of actual vs predicted values for AdaBoost 

Additionally, we explored using a Random Forest classifier (considered an extension of the 
Bagging algorithm), an algorithm that combines multiple decision trees by selecting uncorrelated 
features in every tree and then combining all the decision trees to reach a single result (IBM, N.D.). In 
our use case, the classifier achieved an average accuracy of 0.53 (53%) by comparing 1000 runs (Figure 
26). 

 
Figure 26: Comparison of actual vs predicted values for Random Forest 

Finally, we compared all the results by using a Linear Regression model (as explained before) 
and indicating an arbitrary threshold above which every value would be classed as positive (1); 
otherwise, it would be classed as negative (0). Surprisingly, the model achieved an accuracy of 0.8 (80%). 
However, it is of concern if it will perform with the same precision in a more extensive, diverse dataset 
(Figure 27). 



 
Figure 27: Comparison of actual vs predicted values for Linear Regression 

To conclude, our project contained two key components commonly found in machine learning 
assignments. EDA was instrumental in exploring data and revealing underlying patterns and metrics, 
providing a robust basis for the machine learning models to follow. The second critical component was 
the model definition, parameter selection (fine-tunning) and model comparison. Our models contained 
Logistic Regression, Linear Support Vector Classification, K-Nearest Neighbors (KNN), Decision Trees, and 
Random Forests, among others. While some models displayed inconsistencies, suggesting overfitting, 
others, like the AdaBoost classifier and, surprisingly, the Linear Regression with arbitrary thresholds, 
performed exceptionally well with a precision of 80%. As a future enhancement, neural networks, 
feature selection technics, and more thorough model performance exploration could be performed, 
which, coupled with a more extensive dataset, in terms of rows, could provide better results in accuracy 
and prove production readiness (Figure 28). 
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